不知道更新啥了,就随便更新了

程序猿秒变大艺术家

Kyle McCormick在StackExchange上发起了一个叫做 Tweetable Mathematical Art 的比赛,参赛者需要用三条推这么长的代码来生成一张图片。具体地说,参赛者需要用C++语言编写RD、GR、BL三个函数,每个函数都不能超过140个字符。

每个函数都会接到i和j两个整型参数(0≤i, j≤1023),然后需要返回一个0到255之间的整数,表示位于(i, j)的像素点的颜色值。举个例子,如果RD(0, 0)和GR(0, 0)返回的都是0,但BL(0, 0)返回的是255,那么图像的最左上角那个像素就是蓝色。参赛者编写的代码会被插进下面这段程序当中,最终会生成一个大小为1024×1024的图片。
[codee]// NOTE: compile with g++ filename.cpp -std=c++11

#include <iostream>

#include <cmath>

#include <cstdlib>

#define DIM 1024

#define DM1 (DIM-1)

#define _sq(x) ((x)*(x)) // square

#define _cb(x) abs((x)*(x)*(x)) // absolute value of cube

#define _cr(x) (unsigned char)(pow((x),1.0/3.0)) // cube root

unsigned char GR(int,int);

unsigned char BL(int,int);

unsigned char RD(int i,int j){

// YOUR CODE HERE

}

unsigned char GR(int i,int j){

// YOUR CODE HERE

}

unsigned char BL(int i,int j){

// YOUR CODE HERE

}

void pixel_write(int,int);

FILE *fp;

int main(){

fp = fopen(“MathPic.ppm”,”wb”);

fprintf(fp, “P6\n%d %d\n255\n”, DIM, DIM);

for(int j=0;j<DIM;j++)

for(int i=0;i<DIM;i++)

pixel_write(i,j);

fclose(fp);

return 0;

}

void pixel_write(int i, int j){

static unsigned char color[3];

color[0] = RD(i,j)&255;

color[1] = GR(i,j)&255;

color[2] = BL(i,j)&255;

fwrite(color, 1, 3, fp);

}
[/codee]
我选了一些自己比较喜欢的作品,放在下面和大家分享。

首先是一个来自Martin Büttner的作品:

几行代码,程序猿秒变大艺术家!

它的代码如下:

[codee]unsigned char RD(int i,int j){

return (char)(_sq(cos(atan2(j-512,i-512)/2))*255);

}

unsigned char GR(int i,int j){

return (char)(_sq(cos(atan2(j-512,i-512)/2-2*acos(-1)/3))*255);

}

unsigned char BL(int i,int j){

return (char)(_sq(cos(atan2(j-512,i-512)/2+2*acos(-1)/3))*255);

}[/codee]

同样是来自Martin Büttner的作品:

几行代码,程序猿秒变大艺术家!

这是目前暂时排名第一的作品。它的代码如下:

[codee]unsigned char RD(int i,int j){

#define r(n)(rand()%n)

static char c[1024][1024];return!c[i][j]?c[i][j]=!r(999)?r(256):RD((i+r(2))%1024,(j+r(2))%1024):c[i][j];

}

unsigned char GR(int i,int j){

static char c[1024][1024];return!c[i][j]?c[i][j]=!r(999)?r(256):GR((i+r(2))%1024,(j+r(2))%1024):c[i][j];

}

unsigned char BL(int i,int j){

static char c[1024][1024];return!c[i][j]?c[i][j]=!r(999)?r(256):BL((i+r(2))%1024,(j+r(2))%1024):c[i][j];

}

下面这张图片仍然出自Martin Büttner之手:

几行代码,程序猿秒变大艺术家!

难以想象,Mandelbrot分形图形居然可以只用这么一点代码画出:

unsigned char RD(int i,int j){

float x=0,y=0;int k;for(k=0;k++<256;){float a=”x*x-y*y+(i-768.0)/512;y=2*x*y+(j-512.0)/512;x=a;if(x*x+y*y”>4)break;}return log(k)*47;

}

unsigned char GR(int i,int j){

float x=0,y=0;int k;for(k=0;k++<256;){float a=”x*x-y*y+(i-768.0)/512;y=2*x*y+(j-512.0)/512;x=a;if(x*x+y*y”>4)break;}return log(k)*47;

}

unsigned char BL(int i,int j){

float x=0,y=0;int k;for(k=0;k++<256;){float a=”x*x-y*y+(i-768.0)/512;y=2*x*y+(j-512.0)/512;x=a;if(x*x+y*y”>4)break;}return 128-log(k)*23;

}
[/codee]
Manuel Kasten也制作了一个Mandelbrot集的图片,与刚才不同的是,该图描绘的是Mandelbrot集在某处局部放大后的结果:

几行代码,程序猿秒变大艺术家!

它的代码如下:

[codee]unsigned char RD(int i,int j){

double a=0,b=0,c,d,n=0;

while((c=a*a)+(d=b*b)<4&&n++<880)

{b=2*a*b+j*8e-9-.645411;a=c-d+i*8e-9+.356888;}

return 255*pow((n-80)/800,3.);

}

unsigned char GR(int i,int j){

double a=0,b=0,c,d,n=0;

while((c=a*a)+(d=b*b)<4&&n++<880)

{b=2*a*b+j*8e-9-.645411;a=c-d+i*8e-9+.356888;}

return 255*pow((n-80)/800,.7);

}

unsigned char BL(int i,int j){

double a=0,b=0,c,d,n=0;

while((c=a*a)+(d=b*b)<4&&n++<880)

{b=2*a*b+j*8e-9-.645411;a=c-d+i*8e-9+.356888;}

return 255*pow((n-80)/800,.5);

}
[/codee]
这是Manuel Kasten的另一作品:

几行代码,程序猿秒变大艺术家!

生成这张图片的代码很有意思:函数依靠static变量来控制绘画的进程,完全没有用到i和j这两个参数!

[codee]unsigned char RD(int i,int j){

static double k;k+=rand()/1./RAND_MAX;int l=k;l%=512;return l>255?511-l:l;

}

unsigned char GR(int i,int j){

static double k;k+=rand()/1./RAND_MAX;int l=k;l%=512;return l>255?511-l:l;

}

unsigned char BL(int i,int j){

static double k;k+=rand()/1./RAND_MAX;int l=k;l%=512;return l>255?511-l:l;

}[/codee]

这是来自githubphagocyte的作品:

几行代码,程序猿秒变大艺术家!

它的代码如下:

[codee]unsigned char RD(int i,int j){

float s=3./(j+99);

float y=(j+sin((i*i+_sq(j-700)*5)/100./DIM)*35)*s;

return (int((i+DIM)*s+y)%2+int((DIM*2-i)*s+y)%2)*127;

}

unsigned char GR(int i,int j){

float s=3./(j+99);

float y=(j+sin((i*i+_sq(j-700)*5)/100./DIM)*35)*s;

return (int(5*((i+DIM)*s+y))%2+int(5*((DIM*2-i)*s+y))%2)*127;

}

unsigned char BL(int i,int j){

float s=3./(j+99);

float y=(j+sin((i*i+_sq(j-700)*5)/100./DIM)*35)*s;

return (int(29*((i+DIM)*s+y))%2+int(29*((DIM*2-i)*s+y))%2)*127;

}
[/codee]
这是来自githubphagocyte的另一个作品:

几行代码,程序猿秒变大艺术家!

这是一张使用diffusion-limited aggregation模型得到的图片,程序运行起来要耗费不少时间。代码很有意思:巧妙地利用宏定义,打破了函数与函数之间的界限,三段代码的字数限制便能合在一起使用了。

[codee]unsigned char RD(int i,int j){

#define D DIM

#define M m[(x+D+(d==0)-(d==2))%D][(y+D+(d==1)-(d==3))%D]

#define R rand()%D

#define B m[x][y]

return(i+j)?256-(BL(i,j))/2:0;

}

unsigned char GR(int i,int j){

#define A static int m[D][D],e,x,y,d,c[4],f,n;if(i+j<1){for(d=D*D;d;d–){m[d%D][d/D]=d%6?0:rand()%2000?1:255;}for(n=1

return RD(i,j);

}

unsigned char BL(int i,int j){

A;n;n++){x=R;y=R;if(B==1){f=1;for(d=0;d<4;d++){c[d]=M;f=f<c[d]?c[d]:f;}if(f>2){B=f-1;}else{++e%=4;d=e;if(!c[e]){B=0;M=1;}}}}}return m[i][j];

}
[/codee]
最后这张图来自Eric Tressler:

几行代码,程序猿秒变大艺术家!

这是由logistic映射得到的Feigenbaum分岔图。和刚才一样,对应的代码也巧妙地利用了宏定义来节省字符:

[codee]unsigned char RD(int i,int j){

#define A float a=0,b,k,r,x

#define B int e,o

#define C(x) x>255?255:x

#define R return

#define D DIM

R BL(i,j)*(D-i)/D;

}

unsigned char GR(int i,int j){

#define E DM1

#define F static float

#define G for(

#define H r=a*1.6/D+2.4;x=1.0001*b/D

R BL(i,j)*(D-j/2)/D;

}

unsigned char BL(int i,int j){

F c[D][D];if(i+j<1){A;B;G;a<D;a+=0.1){G b=0;b<D;b++){H;G k=0;k<d;k++){x=r*x*(1-x);if(k>D/2){e=a;o=(E*x);c[e][o]+=0.01;}}}}}R C(c[j][i])*i/D;

}[/codee]

赞(0) 打赏
未经允许不得转载:枣庄滕州微信小程序开发_wordpress主机SEO优化_滕州网站建设 -眼镜男网络 » 程序猿秒变大艺术家
分享到: 更多 (0)

评论 1

评论前必须登录!

 

  1. #1

    进来啊看看

    好书网 3年前 (2016-03-29) 来自天朝的朋友 未知浏览器 Unknow Os